894 research outputs found

    Multiple scattering of matter waves: an analytic model of the refractive index for atomic and molecular gases

    Full text link
    We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines a WKB treatment of the long range attraction with the Fraunhofer model treatment of the short range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two dimensional "hard core" of the potential, is essential for obtaining a correct imaginary part of the refractive index.Comment: 5 pages, 1 figure, 2 table

    An analytic model of rotationally inelastic collisions of polar molecules in electric fields

    Full text link
    We present an analytic model of thermal state-to-state rotationally inelastic collisions of polar molecules in electric fields. The model is based on the Fraunhofer scattering of matter waves and requires Legendre moments characterizing the "shape" of the target in the body-fixed frame as its input. The electric field orients the target in the space-fixed frame and thereby effects a striking alteration of the dynamical observables: both the phase and amplitude of the oscillations in the partial differential cross sections undergo characteristic field-dependent changes that transgress into the partial integral cross sections. As the cross sections can be evaluated for a field applied parallel or perpendicular to the relative velocity, the model also offers predictions about steric asymmetry. We exemplify the field-dependent quantum collision dynamics with the behavior of the Ne-OCS(1Σ^{1}\Sigma) and Ar-NO(2Π^2\Pi) systems. A comparison with the close-coupling calculations available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)] demonstrates the model's ability to qualitatively explain the field dependence of all the scattering features observed

    Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se

    Full text link
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1−x_{1-x}Snx_{x}Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77_{0.77}Sn0.23_{0.23}Se and PbSe have different topological nature.Comment: 5 pages, 4 figure

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Kinetic equations for thermal degradation of polymers

    Full text link
    Kinetic equations are analyzed for thermal degradation of polymers. The governing relations are based on the fragmentation-annihilation concept. Explicit solutions to these equations are derived in two particular cases of interest. For arbitrary values of adjustable parameters, the evolution of the number-average and mass-average molecular weights of polymers is analyzed numerically. Good agreement is demonstrated between the results of numerical simulation and experimental data. It is revealed that the model can correctly predict observations in thermo-gravimetric tests when its parameters are determined by matching experimental data for the decrease in molecular weight with exposure time

    Termination dependent topological surface states of the natural superlattice phase Bi4_4Se3_3

    Get PDF
    We describe the topological surface states of Bi4_4Se3_3, a compound in the infinitely adaptive Bi2_2-Bi2_2Se3_3 natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab-initio density functional theory calculations. Topological surface states are observed on both surfaces, but with markedly different dispersions and Kramers point energies. Bi4_4Se3_3 therefore represents the only known compound with different topological states on differently terminated surfaces.Comment: 5 figures references added Published in PRB: http://link.aps.org/doi/10.1103/PhysRevB.88.08110

    Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod

    Full text link
    We study waves in a rod of finite length with a viscoelastic constitutive equation of fractional distributed-order type for the special choice of weight functions. Prescribing boundary conditions on displacement, we obtain case corresponding to stress relaxation. In solving system of differential and integro-differential equations we use the Laplace transformation in the time domain
    • …
    corecore